Terrestrial vegetation dynamics and global climate controls
نویسندگان
چکیده
Monthly data from the moderate resolution imaging spectroradiometer (MODIS) and its predecessor satellite sensors was used to reconstruct vegetation dynamics in response to climate patterns over the period 1983–2005. Results suggest that plant growth over extensive land areas of southern Africa and Central Asia were the most closely coupled of any major land area to El Niño–southern oscillation (ENSO) effects on regional climate. Others land areas strongly tied to recent ENSO climate effects were in northern Canada, Alaska, western US, northern Mexico, northern Argentina, and Australia. Localized variations in precipitation were the most common controllers of monthly values for the fraction absorbed of photosynthetically active radiation (FPAR) over these regions. In addition to the areas cited above, seasonal FPAR values from MODIS were closely coupled to rainfall patterns in grassland and cropland areas of the northern and central US. Historical associations between global vegetation FPAR and atmospheric carbon dioxide (CO2) anomalies suggest that the terrestrial biosphere can contribute major fluxes of CO2 during major drought events, such as those triggered by 1997–1998 El Niño event.
منابع مشابه
Terrestrial Vegetation Dynamics and Global Climate Controls in North America: 2001–05
Monthly composite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor was used to reconstruct vegetation dynamics in response to climate patterns over the period 2001–05 for North America. Results imply that plant growth over extensive land areas were closely coupled to El Niño–Southern Oscillation (ENSO) effects on regional climate. Areas strongly tied to recen...
متن کاملCoupled Terrestrial Carbon and Water Dynamics in Terrestrial Ecosystems: Contributions of Remote Sensing
The Earth climate is a complex, interactive system, determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The terrestrial biosphere plays many pivotal roles in the coupled Earth system providing both positive and negative feedbacks to climate change (Treut et al., 2007). Terrestrial vegetation via photosynthesis conv...
متن کاملGlobal change and terrestrial plant community dynamics.
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation pro...
متن کاملLiving on the edge-plants and global change in continental and maritime Antarctica
Antarctic terrestrial ecosystems experience some of the most extreme growth conditions on Earth and are characterised by extreme aridity and sub-zero temperatures. Antarctic vegetation is therefore at the physiological limits of survival and, as a consequence, even slight changes to growth conditions are likely to have a large impact, rendering Antarctic terrestrial communities sensitive to cli...
متن کاملA vital link: water and vegetation in the Anthropocene
This paper argues that the interplay of water, carbon and vegetation dynamics fundamentally links some global trends in the current and conceivable future Anthropocene, such as cropland expansion, freshwater use, and climate change and its impacts. Based on a review of recent literature including geographically explicit simulation studies with the process-based LPJmL global biosphere model, it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008